5.3.10 Problems 901 to 1000

Table 5.53: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

5443

\[ {} {y^{\prime }}^{2} x +\left (x -y\right ) y^{\prime }+1-y = 0 \]

5444

\[ {} {y^{\prime }}^{2} x +\left (a +x -y\right ) y^{\prime }-y = 0 \]

5446

\[ {} {y^{\prime }}^{2} x +a +b x -y-b y = 0 \]

5447

\[ {} {y^{\prime }}^{2} x -2 y y^{\prime }+a = 0 \]

5450

\[ {} {y^{\prime }}^{2} x -3 y y^{\prime }+9 x^{2} = 0 \]

5452

\[ {} {y^{\prime }}^{2} x -a y y^{\prime }+b = 0 \]

5458

\[ {} \left (1+x \right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

5459

\[ {} \left (-x +a \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0 \]

5460

\[ {} 2 {y^{\prime }}^{2} x +\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

5462

\[ {} \left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

5463

\[ {} \left (5+3 x \right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \]

5466

\[ {} 4 {y^{\prime }}^{2} x -3 y y^{\prime }+3 = 0 \]

5467

\[ {} 4 {y^{\prime }}^{2} x +4 y y^{\prime } = 1 \]

5477

\[ {} x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y = 0 \]

5479

\[ {} x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0 \]

5480

\[ {} x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \]

5483

\[ {} x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0 \]

5484

\[ {} x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y = 0 \]

5486

\[ {} x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+x^{3}+2 y^{2} = 0 \]

5490

\[ {} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \]

5495

\[ {} \left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+4 x^{2} = 0 \]

5500

\[ {} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

5502

\[ {} \left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \]

5507

\[ {} x^{3} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5508

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

5509

\[ {} x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

5513

\[ {} x^{4} {y^{\prime }}^{2}+x y^{2} y^{\prime }-y^{3} = 0 \]

5515

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y-y = 0 \]

5516

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

5522

\[ {} y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

5525

\[ {} y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

5526

\[ {} y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

5533

\[ {} \left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

5534

\[ {} 2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

5535

\[ {} 9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

5542

\[ {} x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

5543

\[ {} x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

5545

\[ {} x \left (-2 y+x \right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2} = 0 \]

5549

\[ {} y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

5550

\[ {} y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

5551

\[ {} y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \]

5554

\[ {} y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2} = 0 \]

5555

\[ {} y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

5556

\[ {} y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2} = 0 \]

5557

\[ {} y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +a \,x^{2}+\left (1-a \right ) y^{2} = 0 \]

5560

\[ {} \left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

5561

\[ {} \left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

5563

\[ {} \left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

5567

\[ {} 2 y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-1+x^{2}+y^{2} = 0 \]

5568

\[ {} 3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

5570

\[ {} \left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

5571

\[ {} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

5573

\[ {} \left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

5574

\[ {} \left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2} = 0 \]

5575

\[ {} a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

5576

\[ {} x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+a^{2} x = 0 \]

5577

\[ {} x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

5578

\[ {} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-a = 0 \]

5580

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

5581

\[ {} 3 x y^{4} {y^{\prime }}^{2}-y^{5} y^{\prime }+1 = 0 \]

5582

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a = 0 \]

5583

\[ {} 9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2} = 0 \]

5592

\[ {} {y^{\prime }}^{3}+y^{\prime }-y = 0 \]

5593

\[ {} {y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

5595

\[ {} {y^{\prime }}^{3}-x y^{\prime }+a y = 0 \]

5596

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

5597

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

5599

\[ {} {y^{\prime }}^{3}+a x y^{\prime }-a y = 0 \]

5600

\[ {} {y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

5602

\[ {} {y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

5603

\[ {} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

5604

\[ {} {y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

5605

\[ {} {y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0 \]

5608

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5609

\[ {} {y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0 \]

5610

\[ {} {y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

5618

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

5620

\[ {} 3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

5622

\[ {} 8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

5623

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

5625

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

5626

\[ {} 2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

5627

\[ {} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

5628

\[ {} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

5629

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

5631

\[ {} x {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

5632

\[ {} 2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0 \]

5633

\[ {} x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3} = 1 \]

5634

\[ {} x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0 \]

5636

\[ {} 2 {y^{\prime }}^{3} y-3 x y^{\prime }+2 y = 0 \]

5638

\[ {} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

5639

\[ {} y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

5640

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

5641

\[ {} 16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

5642

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5643

\[ {} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

5644

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

5649

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

5650

\[ {} {y^{\prime }}^{4}-4 x^{2} y {y^{\prime }}^{2}+16 x y^{2} y^{\prime }-16 y^{3} = 0 \]

5653

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]