29.33.17 problem 979

Internal problem ID [5556]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 979
Date solved : Sunday, March 30, 2025 at 08:37:59 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2}&=0 \end{align*}

Maple. Time used: 0.241 (sec). Leaf size: 83
ode:=y(x)^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+a-x^2+2*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {4 x^{2}-2 a}}{2} \\ y &= \frac {\sqrt {4 x^{2}-2 a}}{2} \\ y &= -\frac {\sqrt {-8 c_1^{2}+16 c_1 x -4 x^{2}-2 a}}{2} \\ y &= \frac {\sqrt {-8 c_1^{2}+16 c_1 x -4 x^{2}-2 a}}{2} \\ \end{align*}
Mathematica. Time used: 0.678 (sec). Leaf size: 63
ode=y[x]^2 (D[y[x],x])^2-2 x y[x] D[y[x],x]+a -x^2+2 y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-\frac {a}{2}-x^2+4 c_1 x-2 c_1{}^2} \\ y(x)\to \sqrt {-\frac {a}{2}-x^2+4 c_1 x-2 c_1{}^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a - x**2 - 2*x*y(x)*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**2 + 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out