|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a +b +x +y\right )^{2} y^{\prime } = 2 \left (a +y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-3 x -y\right )^{2} y^{\prime } = \left (1-2 y\right ) \left (3-6 x -4 y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime } = y^{3} \csc \left (x \right ) \sec \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 x y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 \left (-y^{2}+x^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (1+x \right )-2 y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-3 x +2 y\right )^{2} y^{\prime } = \left (4+2 x -3 y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x^{2}+y^{2}\right ) y^{\prime } = \left (x^{2}+x^{4}+y^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (-y^{2}+x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-4 x +3 x y^{2}\right ) y^{\prime } = \left (2-y^{2}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 x y-2 y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-x^{3}+6 x^{2} y^{2}\right ) y^{\prime } = \left (6+3 x y-4 y^{3}\right ) x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (3+5 x -12 x y^{2}+4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 x y^{2}+6 x^{2} y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+x y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a^{2} x +y \left (-y^{2}+x^{2}\right )\right ) y^{\prime }+x \left (-y^{2}+x^{2}\right ) = y a^{2}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{3} y^{\prime } = x^{3}-x y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x +y+2 y^{3}\right ) y^{\prime } = y \left (x -y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (1-2 x^{2} y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime } = a^{2} x y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +2 y+2 x^{2} y^{3}+y^{4} x \right ) y^{\prime }+\left (1+y^{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{1+m}+h \left (x \right ) y^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \sqrt {x y}+x -y = \sqrt {x y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (1-\sqrt {-y^{2}+x^{2}}\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime } = x \left (x^{2}+y^{2}\right )+y \sqrt {1+x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} = y+x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+x^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+3 x^{2} = 8 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+a \,x^{2}+b y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-4 \left (1+x \right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+a y y^{\prime }-a x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-a y y^{\prime }-a x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 {y^{\prime }}^{2}-2 y^{\prime } x^{2}+3 x y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x -2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +4 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +y y^{\prime }+a = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x -y y^{\prime }+a = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +y y^{\prime }+x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x -y y^{\prime }+a y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} x +\left (-y+a \right ) y^{\prime }+b = 0
\]
|
✓ |
✓ |
✗ |
|