Internal
problem
ID
[5550]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
33
Problem
number
:
973
Date
solved
:
Sunday, March 30, 2025 at 08:35:59 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=y(x)^2*diff(y(x),x)^2-6*x^3*diff(y(x),x)+4*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]^2 (D[y[x],x])^2-6 x^3 D[y[x],x]+4 x^2 y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**3*Derivative(y(x), x) + 4*x**2*y(x) + y(x)**2*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out