Internal
problem
ID
[5513]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
32
Problem
number
:
935
Date
solved
:
Sunday, March 30, 2025 at 08:29:02 AM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=x^4*diff(y(x),x)^2+x*y(x)^2*diff(y(x),x)-y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x^4 (D[y[x],x])^2+x y[x]^2 D[y[x],x]-y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), x)**2 + x*y(x)**2*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out