Internal
problem
ID
[5570]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
33
Problem
number
:
994
Date
solved
:
Sunday, March 30, 2025 at 09:01:46 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(x^2-4*y(x)^2)*diff(y(x),x)^2+6*x*y(x)*diff(y(x),x)-4*x^2+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-4 y[x]^2) (D[y[x],x])^2 +6 x y[x] D[y[x],x]-4 x^2+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2 + 6*x*y(x)*Derivative(y(x), x) + (x**2 - 4*y(x)**2)*Derivative(y(x), x)**2 + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out