Internal
problem
ID
[5447]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
30
Problem
number
:
865
Date
solved
:
Sunday, March 30, 2025 at 08:13:45 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _dAlembert]
ode:=x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a = 0; dsolve(ode,y(x), singsol=all);
ode=x (D[y[x],x])^2-2 y[x] D[y[x],x]+a==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a + x*Derivative(y(x), x)**2 - 2*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out