29.30.26 problem 886

Internal problem ID [5466]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 886
Date solved : Sunday, March 30, 2025 at 08:15:00 AM
CAS classification : [[_homogeneous, `class G`], _rational, _dAlembert]

\begin{align*} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3&=0 \end{align*}

Maple. Time used: 0.034 (sec). Leaf size: 123
ode:=4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 x \left (6+\sqrt {16 c_1 x +9}\right )}{3 \sqrt {x \left (3+\sqrt {16 c_1 x +9}\right )}} \\ y &= \frac {2 x \left (6+\sqrt {16 c_1 x +9}\right )}{3 \sqrt {x \left (3+\sqrt {16 c_1 x +9}\right )}} \\ y &= \frac {2 x \left (-6+\sqrt {16 c_1 x +9}\right )}{3 \sqrt {-x \left (-3+\sqrt {16 c_1 x +9}\right )}} \\ y &= -\frac {2 x \left (-6+\sqrt {16 c_1 x +9}\right )}{3 \sqrt {-x \left (-3+\sqrt {16 c_1 x +9}\right )}} \\ \end{align*}
Mathematica. Time used: 23.569 (sec). Leaf size: 187
ode=4 x (D[y[x],x])^2-3 y[x] D[y[x],x]+3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {432 x-e^{-\frac {c_1}{2}} \left (-144 x+e^{c_1}\right ){}^{3/2}+e^{c_1}}}{6 \sqrt {3}} \\ y(x)\to \frac {\sqrt {432 x-e^{-\frac {c_1}{2}} \left (-144 x+e^{c_1}\right ){}^{3/2}+e^{c_1}}}{6 \sqrt {3}} \\ y(x)\to -\frac {\sqrt {432 x+e^{-\frac {c_1}{2}} \left (-144 x+e^{c_1}\right ){}^{3/2}+e^{c_1}}}{6 \sqrt {3}} \\ y(x)\to \frac {\sqrt {432 x+e^{-\frac {c_1}{2}} \left (-144 x+e^{c_1}\right ){}^{3/2}+e^{c_1}}}{6 \sqrt {3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x)**2 - 3*y(x)*Derivative(y(x), x) + 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(-48*x + 9*y(x)**2)/8 + 3*y(x)/8)/x cannot be solved by the factorable group method