Internal
problem
ID
[5642]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
36
Problem
number
:
1081
Date
solved
:
Sunday, March 30, 2025 at 09:42:38 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*y(x)^2*diff(y(x),x)^3-y(x)^3*diff(y(x),x)^2+x*(x^2+1)*diff(y(x),x)-x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x y[x]^2 (D[y[x],x])^3 -y[x]^3 (D[y[x],x])^2 + x (1+x^2) D[y[x],x] -x^2 y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x) + x*(x**2 + 1)*Derivative(y(x), x) + x*y(x)**2*Derivative(y(x), x)**3 - y(x)**3*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out