29.35.29 problem 1063

Internal problem ID [5627]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1063
Date solved : Sunday, March 30, 2025 at 09:24:09 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y&=0 \end{align*}

Maple. Time used: 0.175 (sec). Leaf size: 84
ode:=4*x*diff(y(x),x)^3-6*y(x)*diff(y(x),x)^2-x+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\left (1+\sqrt {3}\right ) x}{2} \\ y &= \frac {\left (\sqrt {3}-1\right ) x}{2} \\ y &= x \\ y &= \frac {-\left (c_1 +x \right ) \sqrt {2}\, \sqrt {c_1 \left (c_1 +x \right )}-c_1^{2}}{3 c_1} \\ y &= \frac {\left (c_1 +x \right ) \sqrt {2}\, \sqrt {c_1 \left (c_1 +x \right )}-c_1^{2}}{3 c_1} \\ \end{align*}
Mathematica. Time used: 1.07 (sec). Leaf size: 79
ode=4 x (D[y[x],x])^3 -6 y[x] (D[y[x],x])^2-x +3 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {2} \sqrt {c_1 (x+c_1){}^3}+c_1{}^2}{3 c_1} \\ y(x)\to -\frac {c_1{}^2-\sqrt {2} \sqrt {c_1 (x+c_1){}^3}}{3 c_1} \\ y(x)\to \text {Indeterminate} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x)**3 - x - 6*y(x)*Derivative(y(x), x)**2 + 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out