29.35.12 problem 1044

Internal problem ID [5610]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1044
Date solved : Sunday, March 30, 2025 at 09:17:42 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y&=0 \end{align*}

Maple. Time used: 0.052 (sec). Leaf size: 973
ode:=diff(y(x),x)^3+a0*diff(y(x),x)^2+a1*diff(y(x),x)+a2+a3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica
ode=(D[y[x],x])^3 + a0*(D[y[x],x])^2 +a1*D[y[x],x]+a2 +a3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
a3 = symbols("a3") 
y = Function("y") 
ode = Eq(a0*Derivative(y(x), x)**2 + a1*Derivative(y(x), x) + a2 + a3*y(x) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out