Internal
problem
ID
[5486]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
31
Problem
number
:
906
Date
solved
:
Sunday, March 30, 2025 at 08:17:14 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x^2*diff(y(x),x)^2-3*x*diff(y(x),x)*y(x)+x^3+2*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2-3 x y[x] D[y[x],x]+x^3+2 y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 + x**2*Derivative(y(x), x)**2 - 3*x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(-4*x**3 + y(x)**2) + 3*y(x))/(2*x) cannot be solved by the factorable group method