Internal
problem
ID
[5450]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
30
Problem
number
:
869
Date
solved
:
Sunday, March 30, 2025 at 08:13:52 AM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+9*x^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x (D[y[x],x])^2-3 y[x] D[y[x],x]+9 x^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2 + x*Derivative(y(x), x)**2 - 3*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - 3*(sqrt(-4*x**3 + y(x)**2) + y(x))/(2*x) cannot be solved by the factorable group method