29.33.10 problem 972

Internal problem ID [5549]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 972
Date solved : Sunday, March 30, 2025 at 08:35:55 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational]

\begin{align*} y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.142 (sec). Leaf size: 116
ode:=y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {18^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}}}{2} \\ y &= -\frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (3^{{2}/{3}}+3 i 3^{{1}/{6}}\right )}{4} \\ y &= -\frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (3^{{2}/{3}}-3 i 3^{{1}/{6}}\right )}{4} \\ y &= 0 \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )+3 \int _{}^{\textit {\_Z}}-\frac {4 \textit {\_a}^{3}-3 \sqrt {-4 \textit {\_a}^{3}+9}-9}{\textit {\_a} \left (4 \textit {\_a}^{3}-9\right )}d \textit {\_a} +2 c_1 \right ) x^{{2}/{3}} \\ \end{align*}
Mathematica. Time used: 0.608 (sec). Leaf size: 208
ode=y[x]^2 (D[y[x],x])^2-3 x D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {3}{2} \log (y(x))-\frac {2 \sqrt {1-\frac {9 x^2}{4 y(x)^3}} \text {arcsinh}\left (\frac {3}{2} x \sqrt {-\frac {1}{y(x)^3}}\right )}{\sqrt {-\frac {1}{y(x)^3}} \sqrt {9 x^2-4 y(x)^3}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2 \sqrt {1-\frac {9 x^2}{4 y(x)^3}} \text {arcsinh}\left (\frac {3}{2} x \sqrt {-\frac {1}{y(x)^3}}\right )}{\sqrt {-\frac {1}{y(x)^3}} \sqrt {9 x^2-4 y(x)^3}}+\frac {3}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to \left (-\frac {3}{2}\right )^{2/3} x^{2/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} x^{2/3} \\ y(x)\to -\sqrt [3]{-1} \left (\frac {3}{2}\right )^{2/3} x^{2/3} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(3*x + sqrt(9*x**2 - 4*y(x)**3))/(2*y(x)**2) + Derivative(y(x), x) cannot be solved by the factorable group method