29.31.21 problem 920

Internal problem ID [5500]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 31
Problem number : 920
Date solved : Sunday, March 30, 2025 at 08:25:27 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2}&=0 \end{align*}

Maple. Time used: 0.655 (sec). Leaf size: 51
ode:=(a^2-x^2)*diff(y(x),x)^2+2*x*diff(y(x),x)*y(x)+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {a^{2}-x^{2}} \\ y &= -\sqrt {a^{2}-x^{2}} \\ y &= c_{1} x^{2}-c_{1} a^{2}-\frac {1}{4 c_{1}} \\ \end{align*}
Mathematica. Time used: 0.413 (sec). Leaf size: 67
ode=(a^2-x^2) (D[y[x],x])^2+2 x y[x] D[y[x],x]+x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {a^2-x^2+c_1{}^2}{2 c_1} \\ y(x)\to \text {Indeterminate} \\ y(x)\to -\sqrt {a^2-x^2} \\ y(x)\to \sqrt {a^2-x^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(x**2 + 2*x*y(x)*Derivative(y(x), x) + (a**2 - x**2)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out