29.30.19 problem 878

Internal problem ID [5459]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 878
Date solved : Sunday, March 30, 2025 at 08:14:11 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

\begin{align*} \left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b&=0 \end{align*}

Maple. Time used: 0.095 (sec). Leaf size: 49
ode:=(a-x)*diff(y(x),x)^2+y(x)*diff(y(x),x)-b = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 \sqrt {-b \left (a -x \right )} \\ y &= 2 \sqrt {-b \left (a -x \right )} \\ y &= \frac {\left (-a +x \right ) c_1^{2}+b}{c_1} \\ \end{align*}
Mathematica. Time used: 0.018 (sec). Leaf size: 59
ode=(a-x) (D[y[x],x])^2+y[x] D[y[x],x]-b==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 (x-a)+\frac {b}{c_1} \\ y(x)\to \text {Indeterminate} \\ y(x)\to -2 \sqrt {b (x-a)} \\ y(x)\to 2 \sqrt {b (x-a)} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-b + (a - x)*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out