Internal
problem
ID
[5575]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
34
Problem
number
:
999
Date
solved
:
Sunday, March 30, 2025 at 09:03:42 AM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=a^2*(b^2-(c*x-a*y(x))^2)*diff(y(x),x)^2+2*a*b^2*c*diff(y(x),x)+c^2*(b^2-(c*x-a*y(x))^2) = 0; dsolve(ode,y(x), singsol=all);
ode=a^2 ( b^2 -(c x-a y[x])^2 ) (D[y[x],x])^2 +2 a b^2 c D[y[x],x]+c^2(b^2-(c x-a y[x])^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a**2*(b**2 - (-a*y(x) + c*x)**2)*Derivative(y(x), x)**2 + 2*a*b**2*c*Derivative(y(x), x) + c**2*(b**2 - (-a*y(x) + c*x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out