Internal
problem
ID
[5483]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
31
Problem
number
:
903
Date
solved
:
Sunday, March 30, 2025 at 08:17:03 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
ode:=x^2*diff(y(x),x)^2+2*x*(y(x)+2*x)*diff(y(x),x)-4*a+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2+2 x(2 x+y[x])D[y[x],x]-4 a+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-4*a + x**2*Derivative(y(x), x)**2 + 2*x*(2*x + y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out