29.33.6 problem 968

Internal problem ID [5545]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 968
Date solved : Sunday, March 30, 2025 at 08:33:05 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2}&=0 \end{align*}

Maple. Time used: 0.065 (sec). Leaf size: 103
ode:=x*(x-2*y(x))*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-2*x*y(x)+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {2 \textit {\_a}^{2}+\sqrt {2}\, \sqrt {\textit {\_a} \left (\textit {\_a} -1\right )^{2}}}{\textit {\_a} \left (\textit {\_a}^{2}+1\right )}d \textit {\_a} +2 c_1 \right ) x \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {\sqrt {2}\, \sqrt {\textit {\_a} \left (\textit {\_a} -1\right )^{2}}-2 \textit {\_a}^{2}}{\textit {\_a} \left (\textit {\_a}^{2}+1\right )}d \textit {\_a} +2 c_1 \right ) x \\ \end{align*}
Mathematica. Time used: 4.088 (sec). Leaf size: 167
ode=x(x-2 y[x]) (D[y[x],x])^2-2 x y[x] D[y[x],x]-2 x y[x]+y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-x \left (x+2 e^{\frac {c_1}{2}}\right )}-e^{\frac {c_1}{2}} \\ y(x)\to \sqrt {-x \left (x+2 e^{\frac {c_1}{2}}\right )}-e^{\frac {c_1}{2}} \\ y(x)\to e^{\frac {c_1}{2}}-\sqrt {x \left (-x+2 e^{\frac {c_1}{2}}\right )} \\ y(x)\to \sqrt {x \left (-x+2 e^{\frac {c_1}{2}}\right )}+e^{\frac {c_1}{2}} \\ y(x)\to -\sqrt {-x^2} \\ y(x)\to \sqrt {-x^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 2*y(x))*Derivative(y(x), x)**2 - 2*x*y(x)*Derivative(y(x), x) - 2*x*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out