Internal
problem
ID
[5545]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
33
Problem
number
:
968
Date
solved
:
Sunday, March 30, 2025 at 08:33:05 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x-2*y(x))*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-2*x*y(x)+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x(x-2 y[x]) (D[y[x],x])^2-2 x y[x] D[y[x],x]-2 x y[x]+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x - 2*y(x))*Derivative(y(x), x)**2 - 2*x*y(x)*Derivative(y(x), x) - 2*x*y(x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out