29.35.2 problem 1031

Internal problem ID [5600]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1031
Date solved : Sunday, March 30, 2025 at 09:05:42 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.128 (sec). Leaf size: 65
ode:=diff(y(x),x)^3-(b*x+a)*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 \sqrt {3 b x +3 a}\, \left (b x +a \right )}{9 b} \\ y &= \frac {2 \sqrt {3 b x +3 a}\, \left (b x +a \right )}{9 b} \\ y &= \frac {c_1 \left (-c_1^{2}+b x +a \right )}{b} \\ \end{align*}
Mathematica. Time used: 0.013 (sec). Leaf size: 72
ode=(D[y[x],x])^3 -(a+b*x)D[y[x],x]+b*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1 \left (a+b x-c_1{}^2\right )}{b} \\ y(x)\to -\frac {2 (a+b x)^{3/2}}{3 \sqrt {3} b} \\ y(x)\to \frac {2 (a+b x)^{3/2}}{3 \sqrt {3} b} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b*y(x) - (a + b*x)*Derivative(y(x), x) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out