29.36.12 problem 1078

Internal problem ID [5639]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 36
Problem number : 1078
Date solved : Sunday, March 30, 2025 at 09:37:01 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.303 (sec). Leaf size: 95
ode:=y(x)^2*diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y &= \frac {2 \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y &= -\frac {2 i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y &= \frac {2 i \left (-x^{3}\right )^{{1}/{4}} 6^{{1}/{4}}}{3} \\ y &= 0 \\ y &= \sqrt {c_1 \left (c_1^{2}+2 x \right )} \\ y &= -\sqrt {c_1 \left (c_1^{2}+2 x \right )} \\ \end{align*}
Mathematica. Time used: 0.121 (sec). Leaf size: 119
ode=y[x]^2 (D[y[x],x])^3+2 x D[y[x],x] -y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {2 c_1 x+c_1{}^3} \\ y(x)\to \sqrt {2 c_1 x+c_1{}^3} \\ y(x)\to (-1-i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (1-i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (-1+i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ y(x)\to (1+i) \left (\frac {2}{3}\right )^{3/4} x^{3/4} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**3 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
IndexError : list index out of range