29.30.6 problem 864

Internal problem ID [5446]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 864
Date solved : Sunday, March 30, 2025 at 08:13:43 AM
CAS classification : [[_homogeneous, `class C`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+a +b x -y-b y&=0 \end{align*}

Maple. Time used: 0.048 (sec). Leaf size: 48
ode:=x*diff(y(x),x)^2+a+b*x-y(x)-b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left ({\left (\operatorname {RootOf}\left (\textit {\_Z} -\textit {\_Z}^{\frac {1}{b}} \left (\frac {c_1}{x}\right )^{\frac {b -1}{2 b}}+1-b \right )+1\right )}^{2}+b \right ) x +a}{b +1} \]
Mathematica. Time used: 147.912 (sec). Leaf size: 1133
ode=x (D[y[x],x])^2+(a+b x-y[x])-b y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a + b*x - b*y(x) + x*Derivative(y(x), x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out