29.35.11 problem 1043

Internal problem ID [5609]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1043
Date solved : Sunday, March 30, 2025 at 09:17:40 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} {y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x&=0 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 90
ode:=diff(y(x),x)^3-a*diff(y(x),x)^2+b*y(x)+a*b*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -a x -\frac {\left ({\mathrm e}^{\operatorname {RootOf}\left (-10 \textit {\_Z} \,a^{2}-3 \,{\mathrm e}^{2 \textit {\_Z}}+16 a \,{\mathrm e}^{\textit {\_Z}}+2 c_1 b -13 a^{2}-2 x b \right )}-a \right )^{2} \left (-2 a +{\mathrm e}^{\operatorname {RootOf}\left (-10 \textit {\_Z} \,a^{2}-3 \,{\mathrm e}^{2 \textit {\_Z}}+16 a \,{\mathrm e}^{\textit {\_Z}}+2 c_1 b -13 a^{2}-2 x b \right )}\right )}{b} \]
Mathematica. Time used: 0.711 (sec). Leaf size: 398
ode=(D[y[x],x])^3 - a*(D[y[x],x])^2 +b*y[x]+a*b*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\frac {5 a \left (\frac {\sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} a^2}{3 \sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}+\frac {a}{3}\right )-\frac {3}{2} \left (\frac {\sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} a^2}{3 \sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}+\frac {a}{3}\right )^2-5 a^2 \log \left (\frac {\sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}{3 \sqrt [3]{2}}+\frac {\sqrt [3]{2} a^2}{3 \sqrt [3]{2 a^3+\sqrt {\left (2 a^3-27 a b x-27 b y(x)\right )^2-4 a^6}-27 a b x-27 b y(x)}}+\frac {4 a}{3}\right )}{b}+c_1\right \},y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*b*x - a*Derivative(y(x), x)**2 + b*y(x) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out