29.33.15 problem 977

Internal problem ID [5554]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 977
Date solved : Sunday, March 30, 2025 at 08:37:21 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2}&=0 \end{align*}

Maple. Time used: 0.796 (sec). Leaf size: 57
ode:=y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+a-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+a} \\ y &= -\sqrt {-x^{2}+a} \\ y &= \sqrt {c_1^{2}-2 c_1 x +a} \\ y &= -\sqrt {c_1^{2}-2 c_1 x +a} \\ \end{align*}
Mathematica. Time used: 0.551 (sec). Leaf size: 61
ode=y[x]^2 (D[y[x],x])^2+2 x y[x] D[y[x],x]+a-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {a+c_1 (-2 x+c_1)} \\ y(x)\to \sqrt {a+c_1 (-2 x+c_1)} \\ y(x)\to -\sqrt {a} \\ y(x)\to \sqrt {a} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a + 2*x*y(x)*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**2 - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out