29.35.10 problem 1042

Internal problem ID [5608]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 35
Problem number : 1042
Date solved : Sunday, March 30, 2025 at 09:17:38 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.090 (sec). Leaf size: 56
ode:=diff(y(x),x)^3-diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x}{3}-\frac {2}{27}-\frac {2 \sqrt {-\left (3 x -1\right )^{3}}}{27} \\ y &= \frac {x}{3}-\frac {2}{27}+\frac {2 \sqrt {-\left (3 x -1\right )^{3}}}{27} \\ y &= c_1 \left (c_1^{2}-c_1 +x \right ) \\ \end{align*}
Mathematica. Time used: 0.042 (sec). Leaf size: 74
ode=(D[y[x],x])^3 - (D[y[x],x])^2 +x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 (x+(-1+c_1) c_1) \\ y(x)\to \frac {1}{27} \left (9 x-2 \left (\sqrt {-(3 x-1)^3}+1\right )\right ) \\ y(x)\to \frac {1}{27} \left (9 x+2 \sqrt {-(3 x-1)^3}-2\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x) + Derivative(y(x), x)**3 - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out