5.3.30 Problems 2901 to 3000

Table 5.93: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

10887

\[ {} y^{\prime } = \frac {y^{2} \left (-2 y+2 x^{2}+2 x^{2} y+x^{4} y\right )}{x^{3} \left (x^{2}-y+x^{2} y\right )} \]

10888

\[ {} y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}} \]

10889

\[ {} y^{\prime } = \frac {6 x +x^{3}+x^{3} y^{2}+4 x^{2} y+y^{3} x^{3}+6 x^{2} y^{2}+12 x y+8}{x^{3}} \]

10890

\[ {} y^{\prime } = -\frac {i \left (i x +1+x^{4}+2 x^{2} y^{2}+y^{4}+x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}\right )}{y} \]

10892

\[ {} y^{\prime } = \frac {x +1+y^{4}-2 x^{2} y^{2}+x^{4}+y^{6}-3 x^{2} y^{4}+3 x^{4} y^{2}-x^{6}}{y} \]

10895

\[ {} y^{\prime } = \frac {32 x^{5}+64 x^{6}+64 x^{6} y^{2}+32 x^{4} y+4 x^{2}+64 x^{6} y^{3}+48 x^{4} y^{2}+12 x^{2} y+1}{64 x^{8}} \]

10896

\[ {} y^{\prime } = \frac {2 a \left (-y^{2}+4 a x -1\right )}{-y^{3}+4 a x y-y-2 a y^{6}+24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \]

10897

\[ {} y^{\prime } = \frac {\left (y-a \ln \left (y\right ) x +x^{2}\right ) y}{\left (-y \ln \left (y\right )-y \ln \left (x \right )-y+a x \right ) x} \]

10898

\[ {} y^{\prime } = \frac {-x y^{2}+x^{3}-x -y^{6}+3 x^{2} y^{4}-3 x^{4} y^{2}+x^{6}}{\left (-y^{2}+x^{2}-1\right ) y} \]

10899

\[ {} y^{\prime } = \frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )} \]

10900

\[ {} y^{\prime } = \frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )} \]

10901

\[ {} y^{\prime } = \frac {a^{2} x +a^{3} x^{3}+a^{3} x^{3} y^{2}+2 a^{2} x^{2} y+a x +y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{3} x^{3}} \]

10902

\[ {} y^{\prime } = \frac {x \left (1+x^{2}+y^{2}\right )}{-y^{3}-x^{2} y-y+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \]

10904

\[ {} y^{\prime } = \frac {4 x \left (a -1\right ) \left (a +1\right )}{4 y+a^{2} y^{4}-2 a^{4} y^{2} x^{2}+4 y^{2} a^{2} x^{2}+a^{6} x^{4}-3 a^{4} x^{4}+3 a^{2} x^{4}-y^{4}-2 x^{2} y^{2}-x^{4}} \]

10905

\[ {} y^{\prime } = \frac {x^{3}+x^{3} y^{4}+2 x^{2} y^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \]

10906

\[ {} y^{\prime } = \frac {-2 x -y+1+x^{2} y^{2}+2 x^{3} y+x^{4}+y^{3} x^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x} \]

10908

\[ {} y^{\prime } = \frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 x \,a^{3}+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

10909

\[ {} y^{\prime } = -\frac {-y^{3}-y+2 y^{2} \ln \left (x \right )-\ln \left (x \right )^{2} y^{3}-1+3 y \ln \left (x \right )-3 \ln \left (x \right )^{2} y^{2}+\ln \left (x \right )^{3} y^{3}}{y x} \]

10910

\[ {} y^{\prime } = \frac {2 a \left (x y^{2}-4 a +x \right )}{-y^{3} x^{3}+4 a \,x^{2} y-x^{3} y+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

10911

\[ {} y^{\prime } = -\frac {-y^{3}-y+4 y^{2} \ln \left (x \right )-4 \ln \left (x \right )^{2} y^{3}-1+6 y \ln \left (x \right )-12 \ln \left (x \right )^{2} y^{2}+8 \ln \left (x \right )^{3} y^{3}}{y x} \]

10912

\[ {} y^{\prime } = \frac {y \left (x \ln \left (y\right )+\ln \left (y\right )-x -1+x \ln \left (x \right )+\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (1+x \right )} \]

10913

\[ {} y^{\prime } = \frac {y \left (x \ln \left (x \right )+\ln \left (x \right )+x \ln \left (y\right )+\ln \left (y\right )-x -1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}\right )}{x \left (1+x \right )} \]

10914

\[ {} y^{\prime } = \frac {2 y^{8}}{y^{5}+2 y^{6}+2 y^{2}+16 y^{4} x +32 y^{6} x^{2}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \]

10915

\[ {} y^{\prime } = \frac {y^{{3}/{2}} \left (x -y+\sqrt {y}\right )}{x y^{{3}/{2}}-y^{{5}/{2}}+y^{2}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

10916

\[ {} y^{\prime } = \frac {2 y^{6} \left (1+4 x y^{2}+y^{2}\right )}{y^{3}+4 x y^{5}+y^{5}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \]

10918

\[ {} y^{\prime } = \frac {y^{2}}{y^{2}+y^{{3}/{2}}+x^{2} \sqrt {y}-2 x y^{{3}/{2}}+y^{{5}/{2}}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

10919

\[ {} y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}} \]

10921

\[ {} y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}} \]

10922

\[ {} y^{\prime } = \frac {-8 x^{2} y^{3}+16 x y^{2}+16 x y^{3}-8+12 x y-6 x^{2} y^{2}+y^{3} x^{3}}{16 \left (-2+x y-2 y\right ) x} \]

10923

\[ {} y^{\prime } = -\frac {\left (-8 \,{\mathrm e}^{-x^{2}}+8 x^{2} {\mathrm e}^{-x^{2}}-8-8 y^{2}+8 x^{2} {\mathrm e}^{-x^{2}} y-2 x^{4} {\mathrm e}^{-2 x^{2}}-8 y^{3}+12 x^{2} {\mathrm e}^{-x^{2}} y^{2}-6 y x^{4} {\mathrm e}^{-2 x^{2}}+x^{6} {\mathrm e}^{-3 x^{2}}\right ) x}{8} \]

10924

\[ {} y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+x \,{\mathrm e}^{-\frac {y}{x}}+x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (1+x \right )} \]

10925

\[ {} y^{\prime } = -\frac {16 x y^{3}-8 y^{3}-8 y+8 x y^{2}-2 x^{2} y^{3}-8+12 x y-6 x^{2} y^{2}+y^{3} x^{3}}{32 y x} \]

10926

\[ {} y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+x \,{\mathrm e}^{-\frac {y}{x}}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (1+x \right )} \]

10927

\[ {} y^{\prime } = \frac {-3 x^{2} y-2 x^{3}-2 x -x y^{2}-y+y^{3} x^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x \left (x^{2}+x y+1\right )} \]

10928

\[ {} y^{\prime } = \frac {\left (27 y^{3}+27 \,{\mathrm e}^{3 x^{2}} y+18 \,{\mathrm e}^{3 x^{2}} y^{2}+3 y^{3} {\mathrm e}^{3 x^{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y+9 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y^{2}+{\mathrm e}^{\frac {9 x^{2}}{2}} y^{3}\right ) {\mathrm e}^{3 x^{2}} x \,{\mathrm e}^{-\frac {9 x^{2}}{2}}}{243 y} \]

10929

\[ {} y^{\prime } = -\frac {-x^{2}-x y-x^{3}-x y^{2}+2 y x^{2} \ln \left (x \right )-x^{3} \ln \left (x \right )^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x^{2}} \]

10930

\[ {} y^{\prime } = \frac {x}{2}+1+y^{2}+\frac {x^{2} y}{4}-x y-\frac {x^{4}}{8}+\frac {x^{3}}{8}+\frac {x^{2}}{4}+y^{3}-\frac {3 x^{2} y^{2}}{4}-\frac {3 x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 x^{3} y}{4}-\frac {x^{6}}{64}-\frac {3 x^{5}}{32} \]

10932

\[ {} y^{\prime } = -\frac {x}{4}+1+y^{2}+\frac {7 x^{2} y}{16}-\frac {x y}{2}+\frac {5 x^{4}}{128}-\frac {5 x^{3}}{64}+\frac {x^{2}}{16}+y^{3}+\frac {3 x^{2} y^{2}}{8}-\frac {3 x y^{2}}{4}+\frac {3 x^{4} y}{64}-\frac {3 x^{3} y}{16}+\frac {x^{6}}{512}-\frac {3 x^{5}}{256} \]

10934

\[ {} y^{\prime } = \frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 x y+4 x^{4}-3 x^{3}+y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x} \]

10936

\[ {} y^{\prime } = \frac {x y \ln \left (x \right )+x^{2} \ln \left (x \right )-2 x y-x^{2}-y^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x \left (-y+x \ln \left (x \right )-x \right )} \]

10937

\[ {} y^{\prime } = \frac {-32 x y-72 x^{3}+32 x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}-192 x y^{2}+12 x^{4} y-96 x^{3} y+192 x^{2} y+x^{6}-12 x^{5}+48 x^{4}}{64 y+16 x^{2}-64 x +64} \]

10938

\[ {} y^{\prime } = -\frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}}{-y^{2}-2 x y-x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}} \]

10939

\[ {} y^{\prime } = \frac {-128 x y-24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 x^{2} y^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \]

10940

\[ {} y^{\prime } = \frac {-32 a x y-8 a^{2} x^{3}-16 a b \,x^{2}-32 a x +64 y^{3}+48 a \,x^{2} y^{2}+96 b x y^{2}+12 y a^{2} x^{4}+48 y a \,x^{3} b +48 y b^{2} x^{2}+a^{3} x^{6}+6 a^{2} x^{5} b +12 a \,x^{4} b^{2}+8 b^{3} x^{3}}{64 y+16 a \,x^{2}+32 b x +64} \]

10941

\[ {} y^{\prime } = \frac {-32 x y-8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}+96 a x y^{2}+12 x^{4} y+48 y a \,x^{3}+48 a^{2} x^{2} y+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \]

10943

\[ {} y^{\prime } = \frac {2 x^{2} \cos \left (x \right )+2 \sin \left (x \right ) x^{3}-2 x \sin \left (x \right )+2 x +2 x^{2} y^{2}-4 x \sin \left (x \right ) y+4 x^{2} \cos \left (x \right ) y+4 x y+3-\cos \left (2 x \right )-2 \sin \left (2 x \right ) x -4 \sin \left (x \right )+x^{2} \cos \left (2 x \right )+x^{2}+4 x \cos \left (x \right )}{2 x^{3}} \]

10944

\[ {} y^{\prime } = -\frac {216 y}{-216 y^{4}-252 y^{3}-396 y^{2}-216 y+36 x^{2}-72 x y+60 y^{5}-36 x y^{3}-72 x y^{2}-24 y^{4} x +4 y^{8}+12 y^{7}+33 y^{6}} \]

10946

\[ {} y^{\prime } = -\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 a \,x^{2} y^{2}}{4}+\frac {3 b x y^{2}}{2}+\frac {3 y a^{2} x^{4}}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 y b^{2} x^{2}}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 a \,x^{4} b^{2}}{16}+\frac {b^{3} x^{3}}{8} \]

10947

\[ {} y^{\prime } = -\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{2}+a x y+\frac {x^{4}}{16}+\frac {a \,x^{3}}{4}+\frac {a^{2} x^{2}}{4}+y^{3}+\frac {3 x^{2} y^{2}}{4}+\frac {3 a x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 y a \,x^{3}}{4}+\frac {3 a^{2} x^{2} y}{4}+\frac {x^{6}}{64}+\frac {3 x^{5} a}{32}+\frac {3 a^{2} x^{4}}{16}+\frac {a^{3} x^{3}}{8} \]

10948

\[ {} y^{\prime } = -\frac {-y+\sqrt {x^{2}+y^{2}}\, x^{2}-x \sqrt {x^{2}+y^{2}}\, y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x} \]

10949

\[ {} y^{\prime } = \frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x} \]

10950

\[ {} y^{\prime } = \frac {150 x^{3}+125 \sqrt {x}+125+125 y^{2}-100 x^{3} y-500 y \sqrt {x}+20 x^{6}+200 x^{{7}/{2}}+500 x +125 y^{3}-150 x^{3} y^{2}-750 y^{2} \sqrt {x}+60 y x^{6}+600 y x^{{7}/{2}}+1500 x y-8 x^{9}-120 x^{{13}/{2}}-600 x^{4}-1000 x^{{3}/{2}}}{125 x} \]

10951

\[ {} y^{\prime } = \frac {-150 x^{3} y+60 x^{6}+350 x^{{7}/{2}}-150 x^{3}-125 y \sqrt {x}+250 x -125 \sqrt {x}-125 y^{3}+150 x^{3} y^{2}+750 y^{2} \sqrt {x}-60 y x^{6}-600 y x^{{7}/{2}}-1500 x y+8 x^{9}+120 x^{{13}/{2}}+600 x^{4}+1000 x^{{3}/{2}}}{25 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \]

10954

\[ {} y^{\prime } = \frac {2 x +4 y \ln \left (2 x +1\right ) x +6 y^{2} \ln \left (2 x +1\right ) x +6 y \ln \left (2 x +1\right )^{2} x +2 \ln \left (2 x +1\right )^{3} x +2 x y^{3}+2 \ln \left (2 x +1\right )^{2} x +2 x y^{2}-1+3 y^{2} \ln \left (2 x +1\right )+3 y \ln \left (2 x +1\right )^{2}+y^{2}+y^{3}+2 y \ln \left (2 x +1\right )+\ln \left (2 x +1\right )^{2}+\ln \left (2 x +1\right )^{3}}{2 x +1} \]

10955

\[ {} y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

10956

\[ {} y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

10957

\[ {} y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}} \]

10958

\[ {} y^{\prime } = \frac {4 x \left (a -1\right ) \left (a +1\right ) \left (-y^{2}+a^{2} x^{2}-x^{2}-2\right )}{-4 y^{3}+4 a^{2} x^{2} y-4 x^{2} y-8 y-a^{2} y^{6}+3 a^{4} y^{4} x^{2}-6 y^{4} a^{2} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-4 a^{2} x^{6}+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \]

10959

\[ {} y^{\prime } = \frac {-4 x \cos \left (x \right )+4 x^{2} \sin \left (x \right )+4 x +4+4 y^{2}+8 y \cos \left (x \right ) x -8 x y+2 x^{2} \cos \left (2 x \right )+6 x^{2}-8 x^{2} \cos \left (x \right )+4 y^{3}+12 y^{2} \cos \left (x \right ) x -12 x y^{2}+6 y x^{2} \cos \left (2 x \right )+18 x^{2} y-24 x^{2} \cos \left (x \right ) y+x^{3} \cos \left (3 x \right )+15 \cos \left (x \right ) x^{3}-6 x^{3} \cos \left (2 x \right )-10 x^{3}}{4 x} \]

10960

\[ {} y^{\prime } = -\frac {8 x \left (a -1\right ) \left (a +1\right )}{8+3 x^{2} y^{4}-2 a^{2} y^{4}-2 a^{6} x^{4}+6 a^{4} x^{4}-6 a^{2} x^{4}-4 a^{2} x^{6}-a^{2} y^{6}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}+3 a^{4} y^{4} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}-6 y^{4} a^{2} x^{2}+y^{6}+4 a^{4} y^{2} x^{2}+3 x^{4} y^{2}+4 x^{2} y^{2}-8 a^{2}+2 y^{4}-8 y^{2} a^{2} x^{2}+2 x^{4}-8 y+x^{6}} \]

10961

\[ {} y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

10962

\[ {} y^{\prime } = -\frac {1296 y}{216-216 x^{2} y^{4}+72 y^{8} x +216 y^{7} x -126 y^{10}-315 y^{9}-8 y^{12}-36 y^{11}-570 y^{8}+594 x y^{6}-846 y^{7}-882 y^{6}-612 y^{5}+1152 y^{4} x +1080 x y^{5}+1080 x y^{3}-648 x^{2} y-1728 y^{3}-648 x^{2} y^{2}-432 x y+216 x y^{2}-2376 y^{2}-1944 y^{4}-324 x^{2} y^{3}+216 x^{2}-1296 y+216 x^{3}} \]

10963

\[ {} y^{\prime } = -\frac {x \left (-513-288 y x^{8}+288 y x^{7}-288 y x^{6}-96 x^{8}-216 x^{4} y+1008 x^{5} y-216 x^{6} y^{2}-648 x^{4} y^{3}-216 x^{6} y^{3}+864 x^{5} y^{2}-972 x^{4} y^{2}-594 x^{2} y-216 y^{3}-1296 x^{2} y^{2}+432 y^{2} x^{7}-540 y^{2}+64 x^{9}-648 x^{2} y^{3}+432 x^{3} y^{2}-576 x^{5}-864 x^{4}+720 x^{3} y-1134 x^{2}-378 y-144 x^{7}-756 x^{3}-432 x -456 x^{6}\right )}{216 \left (x^{2}+1\right )^{4}} \]

10964

\[ {} y^{\prime } = \frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (1+x \right )} \]

10965

\[ {} y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (1+x \right )} \]

10966

\[ {} y^{\prime } = -\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{-216 x^{2} y^{4}+72 y^{8} x +216 y^{7} x -126 y^{10}-315 y^{9}-8 y^{12}-36 y^{11}-18 y^{8}+594 x y^{6}+594 y^{7}+2484 y^{6}+4428 y^{5}-432 y^{4} x +1080 x y^{5}-648 x y^{3}-648 x^{2} y+1728 y^{3}-648 x^{2} y^{2}-1296 x y-1944 x y^{2}-1296 y^{2}+2808 y^{4}-324 x^{2} y^{3}-1296 y+216 x^{3}} \]

10973

\[ {} y^{\prime } = y \left (y^{2}+y \,{\mathrm e}^{-x^{2}}+{\mathrm e}^{-2 x^{2}}\right ) {\mathrm e}^{2 x^{2}} x \]

10974

\[ {} y^{\prime } = \frac {y \left (y^{2}+x y+x^{2}+x \right )}{x^{2}} \]

10978

\[ {} y^{\prime } = \frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \]

10979

\[ {} y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (1+x \right )} \]

10980

\[ {} y^{\prime } = \frac {y \left (x^{2} y^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \]

10981

\[ {} y^{\prime } = \frac {\left (x y+1\right ) \left (x^{2} y^{2}+x^{2} y+2 x y+1+x +x^{2}\right )}{x^{5}} \]

10982

\[ {} y^{\prime } = \frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+x y}{x^{2}} \]

10983

\[ {} y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \]

10984

\[ {} y^{\prime } = -F \left (x \right ) \left (y^{2}-2 x y-x^{2}\right )+\frac {y}{x} \]

10985

\[ {} y^{\prime } = -F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \]

10986

\[ {} y^{\prime } = -F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x \]

10987

\[ {} y^{\prime } = -F \left (x \right ) \left (x^{2}+2 x y-y^{2}\right )+\frac {y}{x} \]

10988

\[ {} y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \]

10989

\[ {} y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \]

10990

\[ {} y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \]

10996

\[ {} y^{\prime } = \frac {2 x^{2} y+x^{3}+x y \ln \left (x \right )-y^{2}-x y}{x^{2} \left (x +\ln \left (x \right )\right )} \]

11001

\[ {} y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

11007

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

11008

\[ {} y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

11009

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

11010

\[ {} y^{\prime \prime }-c \,x^{a} y = 0 \]

11011

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

11012

\[ {} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

11013

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

11014

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

11015

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

11016

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

11017

\[ {} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

11018

\[ {} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

11019

\[ {} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

11020

\[ {} y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

11021

\[ {} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

11022

\[ {} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

11023

\[ {} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]