Internal
problem
ID
[10918]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
922
Date
solved
:
Sunday, March 30, 2025 at 07:23:17 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=diff(y(x),x) = y(x)^2/(y(x)^2+y(x)^(3/2)+y(x)^(1/2)*x^2-2*y(x)^(3/2)*x+y(x)^(5/2)+x^3-3*x^2*y(x)+3*x*y(x)^2-y(x)^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == y[x]^2/(x^3 + x^2*Sqrt[y[x]] - 3*x^2*y[x] + y[x]^(3/2) - 2*x*y[x]^(3/2) + y[x]^2 + 3*x*y[x]^2 + y[x]^(5/2) - y[x]^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - y(x)**2/(x**3 + x**2*sqrt(y(x)) - 3*x**2*y(x) - 2*x*y(x)**(3/2) + 3*x*y(x)**2 + y(x)**(5/2) + y(x)**(3/2) - y(x)**3 + y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out