Internal
problem
ID
[10996]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
1000
Date
solved
:
Sunday, March 30, 2025 at 07:38:35 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = 1/x^2*(2*x^2*y(x)+x^3+y(x)*ln(x)*x-y(x)^2-x*y(x))/(x+ln(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x^3 - x*y[x] + 2*x^2*y[x] + x*Log[x]*y[x] - y[x]^2)/(x^2*(x + Log[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**3 + 2*x**2*y(x) + x*y(x)*log(x) - x*y(x) - y(x)**2)/(x**2*(x + log(x))),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3 + 2*x**2*y(x) + x*y(x)*log(x) - x*y(x) - y(x)**2)/(x**2*(x + log(x))) cannot be solved by the lie group method