60.2.316 problem 894

Internal problem ID [10890]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 894
Date solved : Sunday, March 30, 2025 at 07:20:22 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=-\frac {i \left (i x +1+x^{4}+2 x^{2} y^{2}+y^{4}+x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}\right )}{y} \end{align*}

Maple
ode:=diff(y(x),x) = -I*(I*x+1+x^4+2*x^2*y(x)^2+y(x)^4+x^6+3*x^4*y(x)^2+3*x^2*y(x)^4+y(x)^6)/y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x] == ((-I)*(1 + I*x + x^4 + x^6 + 2*x^2*y[x]^2 + 3*x^4*y[x]^2 + y[x]^4 + 3*x^2*y[x]^4 + y[x]^6))/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**6 + 3*x**4*y(x)**2 + x**4 + 3*x**2*y(x)**4 + 2*x**2*y(x)**2 + x*complex(0, 1) + y(x)**6 + y(x)**4 + 1)*complex(0, 1)/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out