Internal
problem
ID
[10958]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
962
Date
solved
:
Sunday, March 30, 2025 at 07:32:40 PM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = 4*x*(a-1)*(a+1)*(-y(x)^2+a^2*x^2-x^2-2)/(-4*y(x)^3+4*a^2*x^2*y(x)-4*x^2*y(x)-8*y(x)-a^2*y(x)^6+3*a^4*y(x)^4*x^2-6*y(x)^4*a^2*x^2-3*a^6*y(x)^2*x^4+9*y(x)^2*a^4*x^4-9*y(x)^2*a^2*x^4+a^8*x^6-4*a^6*x^6+6*a^4*x^6-4*a^2*x^6+y(x)^6+3*x^2*y(x)^4+3*x^4*y(x)^2+x^6); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (4*(-1 + a)*(1 + a)*x*(-2 - x^2 + a^2*x^2 - y[x]^2))/(x^6 - 4*a^2*x^6 + 6*a^4*x^6 - 4*a^6*x^6 + a^8*x^6 - 8*y[x] - 4*x^2*y[x] + 4*a^2*x^2*y[x] + 3*x^4*y[x]^2 - 9*a^2*x^4*y[x]^2 + 9*a^4*x^4*y[x]^2 - 3*a^6*x^4*y[x]^2 - 4*y[x]^3 + 3*x^2*y[x]^4 - 6*a^2*x^2*y[x]^4 + 3*a^4*x^2*y[x]^4 + y[x]^6 - a^2*y[x]^6); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-4*x*(a - 1)*(a + 1)*(a**2*x**2 - x**2 - y(x)**2 - 2)/(a**8*x**6 - 4*a**6*x**6 - 3*a**6*x**4*y(x)**2 + 6*a**4*x**6 + 9*a**4*x**4*y(x)**2 + 3*a**4*x**2*y(x)**4 - 4*a**2*x**6 - 9*a**2*x**4*y(x)**2 - 6*a**2*x**2*y(x)**4 + 4*a**2*x**2*y(x) - a**2*y(x)**6 + x**6 + 3*x**4*y(x)**2 + 3*x**2*y(x)**4 - 4*x**2*y(x) + y(x)**6 - 4*y(x)**3 - 8*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out