Internal
problem
ID
[10982]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
986
Date
solved
:
Sunday, March 30, 2025 at 07:37:04 PM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = (y(x)^3-3*x*y(x)^2*ln(x)+3*x^2*ln(x)^2*y(x)-x^3*ln(x)^3+x^2+x*y(x))/x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x^2 - x^3*Log[x]^3 + x*y[x] + 3*x^2*Log[x]^2*y[x] - 3*x*Log[x]*y[x]^2 + y[x]^3)/x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (-x**3*log(x)**3 + 3*x**2*y(x)*log(x)**2 + x**2 - 3*x*y(x)**2*log(x) + x*y(x) + y(x)**3)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*log(x)**3 - 3*y(x)*log(x)**2 + Derivative(y(x), x) - 1 + 3*y(x)**2*log(x)/x - y(x)/x - y(x)**3/x**2 cannot be solved by the factorable group method