Internal
problem
ID
[10941]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
945
Date
solved
:
Sunday, March 30, 2025 at 07:27:04 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-32*x*y(x)-8*x^3-16*a*x^2-32*x+64*y(x)^3+48*x^2*y(x)^2+96*a*x*y(x)^2+12*y(x)*x^4+48*y(x)*a*x^3+48*a^2*x^2*y(x)+x^6+6*x^5*a+12*a^2*x^4+8*a^3*x^3)/(64*y(x)+16*x^2+32*a*x+64); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-32*x - 16*a*x^2 - 8*x^3 + 8*a^3*x^3 + 12*a^2*x^4 + 6*a*x^5 + x^6 - 32*x*y[x] + 48*a^2*x^2*y[x] + 48*a*x^3*y[x] + 12*x^4*y[x] + 96*a*x*y[x]^2 + 48*x^2*y[x]^2 + 64*y[x]^3)/(64 + 32*a*x + 16*x^2 + 64*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(Derivative(y(x), x) - (8*a**3*x**3 + 12*a**2*x**4 + 48*a**2*x**2*y(x) + 6*a*x**5 + 48*a*x**3*y(x) - 16*a*x**2 + 96*a*x*y(x)**2 + x**6 + 12*x**4*y(x) - 8*x**3 + 48*x**2*y(x)**2 - 32*x*y(x) - 32*x + 64*y(x)**3)/(32*a*x + 16*x**2 + 64*y(x) + 64),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out