Internal
problem
ID
[10895]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
899
Date
solved
:
Sunday, March 30, 2025 at 07:20:47 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
ode:=diff(y(x),x) = 1/64*(32*x^5+64*x^6+64*y(x)^2*x^6+32*y(x)*x^4+4*x^2+64*x^6*y(x)^3+48*x^4*y(x)^2+12*x^2*y(x)+1)/x^8; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1/64 + x^2/16 + x^5/2 + x^6 + (3*x^2*y[x])/16 + (x^4*y[x])/2 + (3*x^4*y[x]^2)/4 + x^6*y[x]^2 + x^6*y[x]^3)/x^8; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (64*x**6*y(x)**3 + 64*x**6*y(x)**2 + 64*x**6 + 32*x**5 + 48*x**4*y(x)**2 + 32*x**4*y(x) + 12*x**2*y(x) + 4*x**2 + 1)/(64*x**8),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out