Internal
problem
ID
[11013]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1017
Date
solved
:
Sunday, March 30, 2025 at 07:39:07 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(exp(2*x)-v^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(E^(2*x) - v^2)*y[x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") ode = Eq((-v**2 + exp(2*x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False