Internal
problem
ID
[10962]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
966
Date
solved
:
Sunday, March 30, 2025 at 07:33:38 PM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = -1296*y(x)/(216-882*y(x)^6+1152*y(x)^4*x-648*x^2*y(x)-1728*y(x)^3-216*x^2*y(x)^4-648*x^2*y(x)^2-432*x*y(x)+1080*x*y(x)^3+216*x*y(x)^2-2376*y(x)^2-612*y(x)^5-1944*y(x)^4-126*y(x)^10-315*y(x)^9-8*y(x)^12-36*y(x)^11-570*y(x)^8-846*y(x)^7-324*x^2*y(x)^3+72*y(x)^8*x+216*y(x)^7*x+1080*y(x)^5*x+594*x*y(x)^6+216*x^2-1296*y(x)+216*x^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-1296*y[x])/(216 + 216*x^2 + 216*x^3 - 1296*y[x] - 432*x*y[x] - 648*x^2*y[x] - 2376*y[x]^2 + 216*x*y[x]^2 - 648*x^2*y[x]^2 - 1728*y[x]^3 + 1080*x*y[x]^3 - 324*x^2*y[x]^3 - 1944*y[x]^4 + 1152*x*y[x]^4 - 216*x^2*y[x]^4 - 612*y[x]^5 + 1080*x*y[x]^5 - 882*y[x]^6 + 594*x*y[x]^6 - 846*y[x]^7 + 216*x*y[x]^7 - 570*y[x]^8 + 72*x*y[x]^8 - 315*y[x]^9 - 126*y[x]^10 - 36*y[x]^11 - 8*y[x]^12); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + 1296*y(x)/(216*x**3 - 216*x**2*y(x)**4 - 324*x**2*y(x)**3 - 648*x**2*y(x)**2 - 648*x**2*y(x) + 216*x**2 + 72*x*y(x)**8 + 216*x*y(x)**7 + 594*x*y(x)**6 + 1080*x*y(x)**5 + 1152*x*y(x)**4 + 1080*x*y(x)**3 + 216*x*y(x)**2 - 432*x*y(x) - 8*y(x)**12 - 36*y(x)**11 - 126*y(x)**10 - 315*y(x)**9 - 570*y(x)**8 - 846*y(x)**7 - 882*y(x)**6 - 612*y(x)**5 - 1944*y(x)**4 - 1728*y(x)**3 - 2376*y(x)**2 - 1296*y(x) + 216),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - 1296*y(x)/(-216*x**3 + 216*x**2*y(x)**4 + 324*x**2*y(x)**3 + 648*x**2*y(x)**2 + 648*x**2*y(x) - 216*x**2 - 72*x*y(x)**8 - 216*x*y(x)**7 - 594*x*y(x)**6 - 1080*x*y(x)**5 - 1152*x*y(x)**4 - 1080*x*y(x)**3 - 216*x*y(x)**2 + 432*x*y(x) + 8*y(x)**12 + 36*y(x)**11 + 126*y(x)**10 + 315*y(x)**9 + 570*y(x)**8 + 846*y(x)**7 + 882*y(x)**6 + 612*y(x)**5 + 1944*y(x)**4 + 1728*y(x)**3 + 2376*y(x)**2 + 1296*y(x) - 216) cannot be solved by the factorable group method