Internal
problem
ID
[10908]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
912
Date
solved
:
Sunday, March 30, 2025 at 07:22:18 PM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = 2*a*x/(-x^3*y(x)+2*a*x^3+2*a*y(x)^4*x^3-16*y(x)^2*a^2*x^2+32*a^3*x+2*a*y(x)^6*x^3-24*y(x)^4*a^2*x^2+96*y(x)^2*x*a^3-128*a^4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (2*a*x)/(-128*a^4 + 32*a^3*x + 2*a*x^3 - x^3*y[x] + 96*a^3*x*y[x]^2 - 16*a^2*x^2*y[x]^2 - 24*a^2*x^2*y[x]^4 + 2*a*x^3*y[x]^4 + 2*a*x^3*y[x]^6); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-2*a*x/(-128*a**4 + 96*a**3*x*y(x)**2 + 32*a**3*x - 24*a**2*x**2*y(x)**4 - 16*a**2*x**2*y(x)**2 + 2*a*x**3*y(x)**6 + 2*a*x**3*y(x)**4 + 2*a*x**3 - x**3*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out