Internal
problem
ID
[10946]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
950
Date
solved
:
Sunday, March 30, 2025 at 07:28:37 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = -1/2*a*x+1+y(x)^2+1/2*a*x^2*y(x)+b*x*y(x)+1/16*a^2*x^4+1/4*a*x^3*b+1/4*b^2*x^2+y(x)^3+3/4*x^2*a*y(x)^2+3/2*y(x)^2*b*x+3/16*y(x)*a^2*x^4+3/4*y(x)*a*x^3*b+3/4*y(x)*b^2*x^2+1/64*a^3*x^6+3/32*a^2*x^5*b+3/16*a*x^4*b^2+1/8*b^3*x^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 - (a*x)/2 + (b^2*x^2)/4 + (a*b*x^3)/4 + (b^3*x^3)/8 + (a^2*x^4)/16 + (3*a*b^2*x^4)/16 + (3*a^2*b*x^5)/32 + (a^3*x^6)/64 + b*x*y[x] + (a*x^2*y[x])/2 + (3*b^2*x^2*y[x])/4 + (3*a*b*x^3*y[x])/4 + (3*a^2*x^4*y[x])/16 + y[x]^2 + (3*b*x*y[x]^2)/2 + (3*a*x^2*y[x]^2)/4 + y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a**3*x**6/64 - 3*a**2*b*x**5/32 - 3*a**2*x**4*y(x)/16 - a**2*x**4/16 - 3*a*b**2*x**4/16 - 3*a*b*x**3*y(x)/4 - a*b*x**3/4 - 3*a*x**2*y(x)**2/4 - a*x**2*y(x)/2 + a*x/2 - b**3*x**3/8 - 3*b**2*x**2*y(x)/4 - b**2*x**2/4 - 3*b*x*y(x)**2/2 - b*x*y(x) - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a**3*x**6/64 - 3*a**2*b*x**5/32 - 3*a**2*x**4*y(x)/16 - a**2*x**4/16 - 3*a*b**2*x**4/16 - 3*a*b*x**3*y(x)/4 - a*b*x**3/4 - 3*a*x**2*y(x)**2/4 - a*x**2*y(x)/2 + a*x/2 - b**3*x**3/8 - 3*b**2*x**2*y(x)/4 - b**2*x**2/4 - 3*b*x*y(x)**2/2 - b*x*y(x) - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1 cannot be solved by the lie group method