60.2.360 problem 938

Internal problem ID [10934]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 938
Date solved : Sunday, March 30, 2025 at 07:26:28 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]

\begin{align*} y^{\prime }&=\frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 x y+4 x^{4}-3 x^{3}+y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 y x^{4}-6 x^{3} y+x^{6}-3 x^{5}}{x} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 39
ode:=diff(y(x),x) = (-x^2+x+1+y(x)^2+5*x^2*y(x)-2*x*y(x)+4*x^4-3*x^3+y(x)^3+3*x^2*y(x)^2-3*x*y(x)^2+3*y(x)*x^4-6*x^3*y(x)+x^6-3*x^5)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x^{2}+x -\frac {1}{3}+\frac {29 \operatorname {RootOf}\left (-81 \int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} +\ln \left (x \right )+3 c_1 \right )}{9} \]
Mathematica. Time used: 0.216 (sec). Leaf size: 86
ode=D[y[x],x] == (1 + x - x^2 - 3*x^3 + 4*x^4 - 3*x^5 + x^6 - 2*x*y[x] + 5*x^2*y[x] - 6*x^3*y[x] + 3*x^4*y[x] + y[x]^2 - 3*x*y[x]^2 + 3*x^2*y[x]^2 + y[x]^3)/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {\frac {3 x^2-3 x+1}{x}+\frac {3 y(x)}{x}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^3}}}}\frac {1}{K[1]^3-\frac {3 K[1]}{29^{2/3}}+1}dK[1]=\frac {1}{9} 29^{2/3} \left (\frac {1}{x^3}\right )^{2/3} x^2 \log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**6 - 3*x**5 + 3*x**4*y(x) + 4*x**4 - 6*x**3*y(x) - 3*x**3 + 3*x**2*y(x)**2 + 5*x**2*y(x) - x**2 - 3*x*y(x)**2 - 2*x*y(x) + x + y(x)**3 + y(x)**2 + 1)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out