Internal
problem
ID
[10923]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
927
Date
solved
:
Sunday, March 30, 2025 at 07:23:36 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
ode:=diff(y(x),x) = -1/8*(-8*exp(-x^2)+8*x^2*exp(-x^2)-8-8*y(x)^2+8*x^2*exp(-x^2)*y(x)-2*x^4*exp(-x^2)^2-8*y(x)^3+12*x^2*exp(-x^2)*y(x)^2-6*y(x)*x^4*exp(-x^2)^2+x^6*exp(-x^2)^3)*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == -1/8*(x*(-8 - 8/E^x^2 + (8*x^2)/E^x^2 - (2*x^4)/E^(2*x^2) + x^6/E^(3*x^2) + (8*x^2*y[x])/E^x^2 - (6*x^4*y[x])/E^(2*x^2) - 8*y[x]^2 + (12*x^2*y[x]^2)/E^x^2 - 8*y[x]^3)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**6*exp(-3*x**2) - 6*x**4*y(x)*exp(-2*x**2) - 2*x**4*exp(-2*x**2) + 12*x**2*y(x)**2*exp(-x**2) + 8*x**2*y(x)*exp(-x**2) + 8*x**2*exp(-x**2) - 8*y(x)**3 - 8*y(x)**2 - 8 - 8*exp(-x**2))/8 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out