Internal
problem
ID
[10951]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
955
Date
solved
:
Sunday, March 30, 2025 at 07:29:53 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/25*(-150*x^3*y(x)+60*x^6+350*x^(7/2)-150*x^3-125*y(x)*x^(1/2)+250*x-125*x^(1/2)-125*y(x)^3+150*x^3*y(x)^2+750*y(x)^2*x^(1/2)-60*y(x)*x^6-600*y(x)*x^(7/2)-1500*x*y(x)+8*x^9+120*x^(13/2)+600*x^4+1000*x^(3/2))/(-5*y(x)+2*x^3+10*x^(1/2)-5)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-5*Sqrt[x] + 10*x + 40*x^(3/2) - 6*x^3 + 14*x^(7/2) + 24*x^4 + (12*x^6)/5 + (24*x^(13/2))/5 + (8*x^9)/25 - 5*Sqrt[x]*y[x] - 60*x*y[x] - 6*x^3*y[x] - 24*x^(7/2)*y[x] - (12*x^6*y[x])/5 + 30*Sqrt[x]*y[x]^2 + 6*x^3*y[x]^2 - 5*y[x]^3)/(x*(-5 + 10*Sqrt[x] + 2*x^3 - 5*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (120*x**(13/2) - 600*x**(7/2)*y(x) + 350*x**(7/2) + 1000*x**(3/2) + 750*sqrt(x)*y(x)**2 - 125*sqrt(x)*y(x) - 125*sqrt(x) + 8*x**9 - 60*x**6*y(x) + 60*x**6 + 600*x**4 + 150*x**3*y(x)**2 - 150*x**3*y(x) - 150*x**3 - 1500*x*y(x) + 250*x - 125*y(x)**3)/(25*x*(10*sqrt(x) + 2*x**3 - 5*y(x) - 5)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out