60.2.354 problem 932

Internal problem ID [10928]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 932
Date solved : Sunday, March 30, 2025 at 07:24:05 PM
CAS classification : [[_Abel, `2nd type`, `class C`]]

\begin{align*} y^{\prime }&=\frac {\left (27 y^{3}+27 \,{\mathrm e}^{3 x^{2}} y+18 \,{\mathrm e}^{3 x^{2}} y^{2}+3 y^{3} {\mathrm e}^{3 x^{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y+9 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y^{2}+{\mathrm e}^{\frac {9 x^{2}}{2}} y^{3}\right ) {\mathrm e}^{3 x^{2}} x \,{\mathrm e}^{-\frac {9 x^{2}}{2}}}{243 y} \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 54
ode:=diff(y(x),x) = 1/243*(27*y(x)^3+27*exp(3*x^2)*y(x)+18*exp(3*x^2)*y(x)^2+3*y(x)^3*exp(3*x^2)+27*exp(9/2*x^2)+27*exp(9/2*x^2)*y(x)+9*exp(9/2*x^2)*y(x)^2+exp(9/2*x^2)*y(x)^3)*exp(3*x^2)*x/y(x)/exp(9/2*x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {369}{136 \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \operatorname {RootOf}\left (-41 x^{2}-50243409 \int _{}^{\textit {\_Z}}\frac {1}{9248 \textit {\_a}^{3}-1860867 \textit {\_a} +1860867}d \textit {\_a} +27 c_1 \right )-123 \,{\mathrm e}^{-\frac {3 x^{2}}{2}}-123} \]
Mathematica. Time used: 0.732 (sec). Leaf size: 129
ode=D[y[x],x] == (x*(27*E^((9*x^2)/2) + 27*E^(3*x^2)*y[x] + 27*E^((9*x^2)/2)*y[x] + 18*E^(3*x^2)*y[x]^2 + 9*E^((9*x^2)/2)*y[x]^2 + 27*y[x]^3 + 3*E^(3*x^2)*y[x]^3 + E^((9*x^2)/2)*y[x]^3))/(243*E^((3*x^2)/2)*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{-\frac {e^{3 x^2} x \left (\left (1+e^{\frac {3 x^2}{2}}\right ) y(x)+3 e^{\frac {3 x^2}{2}}\right )}{2 \sqrt [3]{34} \sqrt [3]{-e^{9 x^2} x^3} y(x)}}\frac {68}{68 K[1]^3+123 \sqrt [3]{-34} K[1]+68}dK[1]+\frac {2}{81} 34^{2/3} e^{-6 x^2} \left (-e^{9 x^2} x^3\right )^{2/3}=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(y(x)**3*exp(9*x**2/2) + 3*y(x)**3*exp(3*x**2) + 27*y(x)**3 + 9*y(x)**2*exp(9*x**2/2) + 18*y(x)**2*exp(3*x**2) + 27*y(x)*exp(9*x**2/2) + 27*y(x)*exp(3*x**2) + 27*exp(9*x**2/2))*exp(-3*x**2/2)/(243*y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out