Internal
problem
ID
[10928]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
932
Date
solved
:
Sunday, March 30, 2025 at 07:24:05 PM
CAS
classification
:
[[_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/243*(27*y(x)^3+27*exp(3*x^2)*y(x)+18*exp(3*x^2)*y(x)^2+3*y(x)^3*exp(3*x^2)+27*exp(9/2*x^2)+27*exp(9/2*x^2)*y(x)+9*exp(9/2*x^2)*y(x)^2+exp(9/2*x^2)*y(x)^3)*exp(3*x^2)*x/y(x)/exp(9/2*x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x*(27*E^((9*x^2)/2) + 27*E^(3*x^2)*y[x] + 27*E^((9*x^2)/2)*y[x] + 18*E^(3*x^2)*y[x]^2 + 9*E^((9*x^2)/2)*y[x]^2 + 27*y[x]^3 + 3*E^(3*x^2)*y[x]^3 + E^((9*x^2)/2)*y[x]^3))/(243*E^((3*x^2)/2)*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(y(x)**3*exp(9*x**2/2) + 3*y(x)**3*exp(3*x**2) + 27*y(x)**3 + 9*y(x)**2*exp(9*x**2/2) + 18*y(x)**2*exp(3*x**2) + 27*y(x)*exp(9*x**2/2) + 27*y(x)*exp(3*x**2) + 27*exp(9*x**2/2))*exp(-3*x**2/2)/(243*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out