60.2.331 problem 909

Internal problem ID [10905]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 909
Date solved : Sunday, March 30, 2025 at 07:21:40 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=\frac {x^{3}+y^{4} x^{3}+2 x^{2} y^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \end{align*}

Maple. Time used: 0.388 (sec). Leaf size: 720
ode:=diff(y(x),x) = (x^3+y(x)^4*x^3+2*x^2*y(x)^2+x+x^3*y(x)^6+3*x^2*y(x)^4+3*x*y(x)^2+1)/x^5/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.125 (sec). Leaf size: 64
ode=D[y[x],x] == (1 + x + x^3 + 3*x*y[x]^2 + 2*x^2*y[x]^2 + 3*x^2*y[x]^4 + x^3*y[x]^4 + x^3*y[x]^6)/(x^5*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{2} \text {RootSum}\left [2 \text {$\#$1}^3+2 \text {$\#$1}^2+1\&,\frac {\log \left (\frac {x y(x)^2+1}{x}-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\&\right ]+\frac {1}{x}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**3*y(x)**6 + x**3*y(x)**4 + x**3 + 3*x**2*y(x)**4 + 2*x**2*y(x)**2 + 3*x*y(x)**2 + x + 1)/(x**5*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out