Internal
problem
ID
[10940]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
944
Date
solved
:
Sunday, March 30, 2025 at 07:27:01 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-32*y(x)*a*x-8*a^2*x^3-16*a*x^2*b-32*a*x+64*y(x)^3+48*x^2*a*y(x)^2+96*y(x)^2*b*x+12*y(x)*a^2*x^4+48*y(x)*a*x^3*b+48*y(x)*b^2*x^2+a^3*x^6+6*a^2*x^5*b+12*a*x^4*b^2+8*b^3*x^3)/(64*y(x)+16*a*x^2+32*b*x+64); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-32*a*x - 16*a*b*x^2 - 8*a^2*x^3 + 8*b^3*x^3 + 12*a*b^2*x^4 + 6*a^2*b*x^5 + a^3*x^6 - 32*a*x*y[x] + 48*b^2*x^2*y[x] + 48*a*b*x^3*y[x] + 12*a^2*x^4*y[x] + 96*b*x*y[x]^2 + 48*a*x^2*y[x]^2 + 64*y[x]^3)/(64 + 32*b*x + 16*a*x^2 + 64*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), x) - (a**3*x**6 + 6*a**2*b*x**5 + 12*a**2*x**4*y(x) - 8*a**2*x**3 + 12*a*b**2*x**4 + 48*a*b*x**3*y(x) - 16*a*b*x**2 + 48*a*x**2*y(x)**2 - 32*a*x*y(x) - 32*a*x + 8*b**3*x**3 + 48*b**2*x**2*y(x) + 96*b*x*y(x)**2 + 64*y(x)**3)/(16*a*x**2 + 32*b*x + 64*y(x) + 64),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out