Internal
problem
ID
[10904]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
908
Date
solved
:
Sunday, March 30, 2025 at 07:21:36 PM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = 4*x*(a-1)*(a+1)/(4*y(x)+y(x)^4*a^2-2*a^4*y(x)^2*x^2+4*y(x)^2*a^2*x^2+a^6*x^4-3*a^4*x^4+3*a^2*x^4-y(x)^4-2*x^2*y(x)^2-x^4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (4*(-1 + a)*(1 + a)*x)/(-x^4 + 3*a^2*x^4 - 3*a^4*x^4 + a^6*x^4 + 4*y[x] - 2*x^2*y[x]^2 + 4*a^2*x^2*y[x]^2 - 2*a^4*x^2*y[x]^2 - y[x]^4 + a^2*y[x]^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-4*x*(a - 1)*(a + 1)/(a**6*x**4 - 3*a**4*x**4 - 2*a**4*x**2*y(x)**2 + 3*a**2*x**4 + 4*a**2*x**2*y(x)**2 + a**2*y(x)**4 - x**4 - 2*x**2*y(x)**2 - y(x)**4 + 4*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out