5.3.16 Problems 1501 to 1600

Table 5.65: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

8348

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]

8349

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]

8350

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

8363

\[ {} 2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]

8376

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (-4+t \right ) \]

8381

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right )-9 z \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 10 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )] \]

8382

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )] \]

8384

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right )+{\mathrm e}^{-t} \sin \left (2 t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+9 z \left (t \right )+4 \,{\mathrm e}^{-t} \cos \left (2 t \right ), z^{\prime }\left (t \right ) = y \left (t \right )+6 z \left (t \right )-{\mathrm e}^{-t}] \]

8386

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )-9 z \left (t \right )-8 \,{\mathrm e}^{-2 t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{5 t}, z^{\prime }\left (t \right ) = -2 y \left (t \right )+3 z \left (t \right )+{\mathrm e}^{5 t}-3 \,{\mathrm e}^{-2 t}] \]

8387

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

8410

\[ {} \left [x^{\prime }\left (t \right ) = \frac {9 x \left (t \right )}{10}+\frac {21 y \left (t \right )}{10}+\frac {16 z \left (t \right )}{5}, y^{\prime }\left (t \right ) = \frac {7 x \left (t \right )}{10}+\frac {13 y \left (t \right )}{2}+\frac {21 z \left (t \right )}{5}, z^{\prime }\left (t \right ) = \frac {11 x \left (t \right )}{10}+\frac {17 y \left (t \right )}{10}+\frac {17 z \left (t \right )}{5}\right ] \]

8411

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{3} \left (t \right )-\frac {9 x_{4} \left (t \right )}{5}, x_{2}^{\prime }\left (t \right ) = \frac {51 x_{2} \left (t \right )}{10}-x_{4} \left (t \right )+3 x_{5} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = x_{2} \left (t \right )-\frac {31 x_{3} \left (t \right )}{10}+4 x_{4} \left (t \right ), x_{5}^{\prime }\left (t \right ) = -\frac {14 x_{1} \left (t \right )}{5}+\frac {3 x_{4} \left (t \right )}{2}-x_{5} \left (t \right )\right ] \]

8449

\[ {} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

8456

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8459

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

8460

\[ {} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

8461

\[ {} {y^{\prime }}^{3}+{y^{\prime }}^{2} x -y = 0 \]

8462

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

8465

\[ {} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

8472

\[ {} {y^{\prime }}^{2} x +\left (x -y\right ) y^{\prime }+1-y = 0 \]

8473

\[ {} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

8474

\[ {} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

8475

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

8476

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

8477

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

8478

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

8479

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

8480

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

8481

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

8482

\[ {} 4 {y^{\prime }}^{2} x -3 y y^{\prime }+3 = 0 \]

8483

\[ {} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

8484

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

8485

\[ {} 2 {y^{\prime }}^{2} x +\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

8486

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

8487

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

8488

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

8492

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8493

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8494

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

8498

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

8499

\[ {} y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

8501

\[ {} y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8505

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8506

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8507

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8508

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8512

\[ {} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

8515

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

8516

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

8517

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

8518

\[ {} \left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

8524

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

8526

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

8527

\[ {} 3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

8528

\[ {} 4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

8533

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

8535

\[ {} 9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

8536

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

8538

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

8540

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

8541

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

8542

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

8543

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

8546

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

8547

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

8548

\[ {} x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \]

8551

\[ {} \left (y^{\prime }+1\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

8552

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

8555

\[ {} {y^{\prime }}^{2} x +\left (k -x -y\right ) y^{\prime }+y = 0 \]

8556

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

8572

\[ {} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

8573

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = x^{2} \]

8638

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y = 0 \]

8679

\[ {} x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 x y = 0 \]

8703

\[ {} y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

8724

\[ {} y^{\prime } = \frac {2 y}{x} \]

8731

\[ {} y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

8733

\[ {} y^{\prime } = \sqrt {y}+x \]

8747

\[ {} x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

8748

\[ {} x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

8749

\[ {} x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

8750

\[ {} u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

8751

\[ {} y y^{\prime }-y = x \]

8757

\[ {} y y^{\prime } = 1-x {y^{\prime }}^{3} \]

8775

\[ {} y y^{\prime \prime } = x \]

8776

\[ {} y^{2} y^{\prime \prime } = x \]

8778

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

8779

\[ {} 3 y y^{\prime \prime }+y = 5 \]

8780

\[ {} a y y^{\prime \prime }+b y = c \]

8789

\[ {} x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

8791

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

8793

\[ {} y^{\prime } = x^{2}+y^{2} \]

8797

\[ {} y^{\prime } = x^{2}+y^{2}-1 \]

8798

\[ {} y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]

8799

\[ {} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

8803

\[ {} y^{\prime \prime }-y y^{\prime } = 2 x \]

8804

\[ {} y^{\prime }-y^{2}-x -x^{2} = 0 \]

8805

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8806

\[ {} y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

8807

\[ {} y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]