53.3.10 problem 12

Internal problem ID [8472]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 99. Clairaut equation. EXERCISES Page 320
Problem number : 12
Date solved : Sunday, March 30, 2025 at 01:11:03 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \end{align*}

Maple. Time used: 0.090 (sec). Leaf size: 44
ode:=x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x -2 \sqrt {x} \\ y &= -x +2 \sqrt {x} \\ y &= \frac {c_1^{2} x +c_1 x +1}{c_1 +1} \\ \end{align*}
Mathematica. Time used: 0.019 (sec). Leaf size: 46
ode=x*(D[y[x],x])^2+(x-y[x])*D[y[x],x]+1-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x+\frac {1}{1+c_1} \\ y(x)\to -x-2 \sqrt {x} \\ y(x)\to 2 \sqrt {x}-x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + (x - y(x))*Derivative(y(x), x) - y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out