52.9.4 problem 4

Internal problem ID [8382]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. EXERCISES 8.1. Page 332
Problem number : 4
Date solved : Sunday, March 30, 2025 at 12:53:41 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+2 z \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=-x \left (t \right )+z \left (t \right ) \end{align*}

Maple. Time used: 0.468 (sec). Leaf size: 2265
ode:=[diff(x(t),t) = x(t)-y(t), diff(y(t),t) = x(t)+2*z(t), diff(z(t),t) = -x(t)+z(t)]; 
dsolve(ode);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.02 (sec). Leaf size: 503
ode={D[x[t],t]==x[t]-y[t],D[y[t],t]==x[t]+2*z[t],D[z[t],t]==-x[t]+z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -2 c_3 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]-c_2 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]+c_1 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-\text {$\#$1} e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ] \\ y(t)\to c_1 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-3 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]+2 c_3 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]+c_2 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-2 \text {$\#$1} e^{\text {$\#$1} t}+e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ] \\ z(t)\to c_2 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]-c_1 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ]+c_3 \text {RootSum}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+2 \text {$\#$1}-3\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-\text {$\#$1} e^{\text {$\#$1} t}+e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-4 \text {$\#$1}+2}\&\right ] \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-x(t) + y(t) + Derivative(x(t), t),0),Eq(-x(t) - 2*z(t) + Derivative(y(t), t),0),Eq(x(t) - z(t) + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
Timed Out