54.2.15 problem 18

Internal problem ID [8547]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 16. Nonlinear equations. Miscellaneous Exercises. Page 340
Problem number : 18
Date solved : Sunday, March 30, 2025 at 01:17:24 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \end{align*}

Maple. Time used: 0.307 (sec). Leaf size: 259
ode:=9*x*y(x)^4*diff(y(x),x)^2-3*y(x)^5*diff(y(x),x)-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 2^{{1}/{3}} \left (-x \right )^{{1}/{6}} \\ y &= -2^{{1}/{3}} \left (-x \right )^{{1}/{6}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) 2^{{1}/{3}} \left (-x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (i \sqrt {3}-1\right ) 2^{{1}/{3}} \left (-x \right )^{{1}/{6}}}{2} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) 2^{{1}/{3}} \left (-x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (1+i \sqrt {3}\right ) 2^{{1}/{3}} \left (-x \right )^{{1}/{6}}}{2} \\ y &= \frac {\left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{c_1} \\ y &= -\frac {\left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{c_1} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) \left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ y &= \frac {\left (1+i \sqrt {3}\right ) \left (\left (c_1 -x \right )^{2} c_1^{5}\right )^{{1}/{6}}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 3.107 (sec). Leaf size: 322
ode=9*x*y[x]^4*(D[y[x],x])^2-3*y[x]^5*D[y[x],x]-1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt [3]{-\frac {1}{2}} e^{-\frac {c_1}{6}} \sqrt [3]{-4 x+e^{c_1}} \\ y(x)\to \frac {e^{-\frac {c_1}{6}} \sqrt [3]{-4 x+e^{c_1}}}{\sqrt [3]{2}} \\ y(x)\to \frac {(-1)^{2/3} e^{-\frac {c_1}{6}} \sqrt [3]{-4 x+e^{c_1}}}{\sqrt [3]{2}} \\ y(x)\to -\sqrt [3]{-\frac {1}{2}} \sqrt [3]{-e^{-\frac {c_1}{2}} \left (-4 x+e^{c_1}\right )} \\ y(x)\to \frac {\sqrt [3]{e^{-\frac {c_1}{2}} \left (4 x-e^{c_1}\right )}}{\sqrt [3]{2}} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{-e^{-\frac {c_1}{2}} \left (-4 x+e^{c_1}\right )}}{\sqrt [3]{2}} \\ y(x)\to -i \sqrt [3]{2} \sqrt [6]{x} \\ y(x)\to i \sqrt [3]{2} \sqrt [6]{x} \\ y(x)\to -\sqrt [6]{-1} \sqrt [3]{2} \sqrt [6]{x} \\ y(x)\to \sqrt [6]{-1} \sqrt [3]{2} \sqrt [6]{x} \\ y(x)\to -(-1)^{5/6} \sqrt [3]{2} \sqrt [6]{x} \\ y(x)\to (-1)^{5/6} \sqrt [3]{2} \sqrt [6]{x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x*y(x)**4*Derivative(y(x), x)**2 - 3*y(x)**5*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out