Internal
problem
ID
[8476]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
99.
Clairaut
equation.
EXERCISES
Page
320
Problem
number
:
16
Date
solved
:
Sunday, March 30, 2025 at 01:11:31 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=x*diff(y(x),x)^4-2*y(x)*diff(y(x),x)^3+12*x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x*(D[y[x],x])^4-2*y[x]*(D[y[x],x])^3+12*x^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(12*x**3 + x*Derivative(y(x), x)**4 - 2*y(x)*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out