Internal
problem
ID
[8384]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.1.
Page
332
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 12:53:56 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -3*x(t)+4*y(t)+exp(-t)*sin(2*t), diff(y(t),t) = 5*x(t)+9*z(t)+4*exp(-t)*cos(2*t), diff(z(t),t) = y(t)+6*z(t)-exp(-t)]; dsolve(ode);
ode={D[x[t],t]==-3*x[t]+4*y[t]+Exp[-t]*Sin[2*t],D[y[t],t]==5*x[t]+9*z[t]+4*Exp[-t]*Cos[2*t],D[z[t],t]==y[t]+6*z[t]-Exp[-t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(3*x(t) - 4*y(t) + Derivative(x(t), t) - exp(-t)*sin(2*t),0),Eq(-5*x(t) - 9*z(t) + Derivative(y(t), t) - 4*exp(-t)*cos(2*t),0),Eq(-y(t) - 6*z(t) + Derivative(z(t), t) + exp(-t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out